毎週やってくる正念場、ゼミの全容とは?

みなさんこんにちは!😀

HP担当の石田です!

最近研究室のノートパソコンが新しくなりまして、HP(ヒューレットパッカード)の最新型に変わりました!この記事もそのパソコンで作成しております。動きがクッキーよりもサクサクで仕事がはかどるでございます!😁

それにしても、HP担当がHPを使用してHP作成している…。シュールの極みですね!あっはっは!

…こういう人がつまらないギャグ連発して部下を困らせる上司になっていくんでしょうね~。気を付けます😂

今回は進捗報告に関する記事でございます。当研究室で通称「ゼミ」と呼ばれるこの週一の行事は研究の進捗報告を意味します。発表の準備から発表の様子まで、ゼミの全容を解説していきたいと思います!


  • ゼミとは一体何か?
  • 資料の準備
  • 質問
  • まとめ

ゼミとは一体何か?

ゼミナール[Seminar ドイツ]〘名〙 

❶ 大学で、少人数の学生が教師の指導のもとで特定のテーマを研究し、それについての発表・討論を行う形式の授業。演習。ゼミ。セミナー。

❷ 少人数を対象にし、討論などを交えながら行われる講習会。セミナー。

 

広辞苑によるゼミ(ゼミナール)の意味は上記のようですね(広辞苑は若干大げさでしたか…)。セミナーのほうが聞きなじみがありますし、なぜ日本でドイツ語のゼミが定着しているのか疑問ではありますが、それは今日の私の夜ご飯に昨日の残りの豚汁が入るかどうかくらいどうでもいい話なのでここでは割愛しましょう。😇

世間一般ではゼミとは学生と先生が一体となって特定のテーマを進めていくことをいうみたいですね。実際私の周りでも「ゼミの集まりあるから」などという言葉をよく聞きます。しかし、当研究室ではゼミを「進捗報告の会」というニュアンスで使うことがほとんどです。

他研究室では進捗報告は2週間に1回というところもあるようですが、当研究室では1週間に一度行っております。そして、報告のためには当然報告資料が必要になります。まずは、そちらから見ていきましょう。


資料の準備

百聞は一見に如かず…ということで、まずは実際にゼミ資料の写真を見ていただくのがよいかと思います。僭越ながらとれたての私のものを…。


【ゼミ資料の写真 ※見にくい場合はタップ(クリック)で拡大可能です】

ゼミ資料はフォーマットが決まっていて、書き方や図や表の配置にもルールが決まっています。「なんでそんなめんどくさいことするねん…わかりやすけりゃなんでもええやんけ…😯」とお思いの方もいるかもしれませんが、これにはちゃんとしたわけがあります。

研究の成果は対外的に学会や研究会で発表することになります。その際には必ず研究成果をまとめた原稿が必要であり、その時のフォーマットにゼミ資料が寄せられているのです。つまり、普段からゼミ資料のフォーマットに慣れていることによって、原稿づくりの苦労が圧倒的に軽減されるわけですね!それに、卒業前には卒業論文ないし修士論文があります。これらのフォーマットはゼミ資料ほぼそのもの!ですから普段のゼミ資料をしっかりと作っていればベースがあるわけですから負担が軽減されますね!

資料が出来上がったらmicrosoft teamsの岡本研究室アカウントに投稿します。これで、みんなが見られる状態になったわけですね。

実は昨年までは紙ですべて印刷していたのですが、今年のコロナの影響でオンラインゼミになったのをきっかけに電子化の運びとなりました。こんな感じで発表時はみんなが他の人の資料をオンラインで閲覧します。


【ほかの人のゼミ資料はパソコンで閲覧】

コロナの影響による生活の変化が岡本研究室にも来ています。紙の消費が圧倒的に抑えられたのは大きいかもしれませんね。


発表

そしてついに発表です。写真のように発表者は前に出て発表を行います。


【発表の様子】

作った資料はプロジェクタを使用してスクリーンに投影します。まさにプレゼンをするような形ですね。ぶっちゃけ本研究室に入って3年目を迎える私でございますが、発表はいまだにすこし緊張します。

しかし、社会人となれば発表は当たり前になってきますし、プレゼンスキルは要求されてきます。こういう機会を毎週のようにもらえることはむしろ好都合なのではないかと思います。

一人の持ち時間の目安はおおよそ20分ほどで、初めに5~10分ほどで発表者からの解説を行った後、先生或いは先輩学生からの質問や指導を受けます(ほとんど先生ですが…)。

その際に検討の甘かった部分や、間違っている部分などを指摘してもらうことで方向修正をします。研究は授業の課題などと違って課題設定を自分で行わなければなりませんから、そこを間違えればせっかく頑張ったのにそもそもやる意味がなかった、なんてことにもなりかねません。そういうわけで毎週修正を行っていくことが非常に重要なんですね~。

ちなみに先生って厳しいの?と思っている方もいると思います。これには何とも答えづらいところですが、決して甘くはないという答えが良いかと思います。感情的に理不尽に怒ったりすることのない先生ですが、要求レベルを甘くすることはありませんから、しっかりやっていなければ厳しい言葉をもらうことも多々あります。しかし、誤った状態のまま指摘するのが嫌だからという理由でずるずると研究を進めていってしまうと、最終的に成果が全く出ず卒業できない、なんてことにもなりかねません。しっかりとしたマネージャーを務めてくれている感じですね。まあ、ふつーに、まじめにコツコツやっていれば問題ありません!


質問

発表および質疑と議論が終わると「割りばし質問タイム」が始まります。割りばしで作った「くじ」でランダムに指名された人が強制的に質問させられるシステムです。ロシアンルーレット並みのスリルがあって楽しいですよ。しっかりとお互いの発表を聞きましょう、という工夫です笑

たまにぼーっとしていた人が当たってあからさまにびっくりした顔をすることがありますね。え?私じゃありませんよ~…………😨。


まとめ

さて、今回はゼミにフィーチャーしてまいりました。毎週報告物を用意するのは楽ではありませんが、これがあるおかげで少しずつでも自分のお尻を叩いて前に進むことができるんですよね。

なんだかとっても意識高い系の文章みたいになってしまいましたが、そんなに重い空気でやっているわけではありません。

たまに内職している生徒もいますしねぇ。え?ゼミ中にZOZOTO●Nで買い物?いやいやさすがにそんなふざけたマネしたことなんかありませんよ?断じて!🙄

それでは今日はこの辺で!😉

研究紹介part4:ほんの少しのミスも許されない、自動運転の通信

皆さんこんにちは!😁

HP担当の石田です!めっきり寒くなってまいりました…。

いつも思うのですが秋服の出番がありません。残暑のせいで半そでの時期が長引き、ようやく先日購入した秋服が着られると思ったらあっという間に寒くなって、もうコートが欲しいくらいになってますよね。😭

きっと秋服たちはバラエティ番組のひな壇芸人くらい出番を欲しがっていることでしょうね…。🐄

さて、本日は大人気コーナー(であってほしい)の研究紹介です!今回で4回目を迎えるこのコーナーですが、今回のゲストはたびたび当ブログに登場してくれている塩満君です!

いつも通り研究の概要、背景、提案手法などをわかりやすく解説してまいります!

  • 研究の概要と背景
  • 提案手法
  • 唯一Matlabを使用している学生であることについて
  • まとめ

研究の概要と背景

石田「お忙しいところご対応いただきありがとうございます。全然関係ないけど、最近僕らは任●堂スイ●チが欲しいといって盛り上がってるじゃないですか。」

塩満くん「そうですね。マリ男カートやゼル田の伝説などやりたいってよく言ってますよね。石田君は特に熱が入ってるみたいで…。」

石田「そうです、そうです。ネットではなかなか手に入らないけど、郊外に行けば電気屋さんで普通に買えることがあるらしいですよ。よかったら一緒に買いに行きませんか?」

塩満君「あ~…。最近ゴルフ初めて初期投資しちゃったんですよ…。なんでちょっとお金が…。」

石田「は!?そんなん聞いてないぞ!裏切りにもほどがあるでしょ!」

塩満君「ごめんなさい…笑」

石田「じゃあ僕もスイ●チやめてゴルフ始めます。みなさん、次回の投稿は“ゴルフ、始めました。”になりそうです。どうぞよろしくお願いします。」

塩満君「…そろそろインタビューはじめませんか笑」

石田「そうですね、失礼しました笑
まずはいつもの質問行ってみたいと思います。塩満君の研究を一言で表すとズバリ何ですか?」

塩満君「“自動運転に使う無線通信の開発”ですね。」

石田「やってまいりました。自動運転でございます。この言葉で研究室を選んでくれる人も結構いるようですね。実はこの研究テーマ、最初私と塩満君で取りあったんです。自動車が好きだからという単純な理由で選んだ私と血で血を洗う戦いを繰り広げた壮絶な過去があります。」

塩満君「確かじゃんけんでしたよね?」

石田「…さて、自動運転のための無線通信というと、車と車を結ぶ通信の開発になってくるんですか?」

塩満君「それも確かに大事な要素なんですが、僕が担当しているのは基地局と車を結ぶ通信の改良です。ちょうど下の図のような感じですね。自動運転は車同士の単位で行うよりも全体で最適化することが求められますから、基地局との通信も欠かせないわけです。」


【自動運転の通信網を示す図(画像はクリック(タップ)で拡大できます)】

石田「なるほど。自動運転の技術って現在はどんな感じなんですか?」

塩満君「自動運転自体はまだ運用されていませんから、残念ながら既存技術は存在しません。ですから、自動運転を目指す5Gではそれを実現するためのURLLCというシナリオを設けているんです。」

石田「シナリオ…ですか。」

塩満君「そうです。シナリオというのは“こういうことを実現したいから、こういう通信を作ってくださいね”、という目標です。5Gに関する記事は過去にも石田君が書いていたと思いますから、そちらを見てもらえればと思います。(→5Gって何?)」

石田「あ、宣伝ありがとうございます。まるで仕組まれたような会話ですね。ちなみにURLLCというのは“ウッチャンナンチャン リーボックで買い物したら ロリロリの チーズがついてきた”の略称ではないですよね?」

塩満君「惜しいですね。Ultra-Reliable and Low Latency Communicationsです。日本語では超信頼低遅延なんて言われますね。つまり、絶対に間違えなくて、しかも遅延が発生しない通信という意味です。URLLCのシナリオで考えられている用途は自動運転はもちろん、遠隔医療だったりします。つまり、ほんの少しのミスや遅延が許されない環境なわけです。とりわけ自動運転においてデータ伝送に誤りが発生することは車を誤操作することと同義です。誤操作された車がどうなってしまうか、想像に難くないですよね。」

石田「なるほど、絶対に間違えてはいけない通信とは。絶対に笑ってはいけない○○24時よりも難易度が高そうです。となると、現状の通信規格では自動運転の実現は難しいんですか?」

塩満君「残念ながらそうなんです。例えば4Gという現在広く普及している通信規格に沿って自動運転を実現することを考えるとします。場所は高速道路で、時速80kmで走行しているとします。この規格だと基地局でブレーキの指示を出してから実際に車がブレーキをかけるまでに2.2m進んでしまうんです。」

石田「高速道路で2.2m遅れてしまうと考えると…。事故のリスクは相当に高くなりますね…。」

塩満君「そうですね。石田君のギャグの事故リスクよりは高くならなそうですが…。しかし、URLLCで目指している条件ならば、遅延が発生したとしても2.2cmで済むんです。」

石田「2.2cm!全然違いますね。それならば、ほぼ誤差なので大丈夫そうですね。ちなみにURLLCで設定されている”これくらいを目指してね”という指標はどれくらいなんですか?」

塩満君「パケット誤り率(ビットの塊)で、0.001%(2019年時点,現在は変更されています)以下を達成することが目標とされています。つまり、10000パケット送って1回しか間違えてはいけないということですね。」

石田「10000パケットですか…!笑
相当に厳しいですね。一体この厳しい条件をどうやってクリアしたのでしょうか…?」


提案手法

石田「塩満君の研究ではすでにシミュレーションで先ほどの誤り率0.001%以下を達成していますよね?実際にはどうやって実現したのでしょうか?」

塩満君「そうですね。すでに5G向けに考えられていた手法がいくつかあるんですが、その中の一つを改良することで達成しました。まず、もともとの方法を紹介しましょうかね。
通信というのは完璧でなくて、白色ガウス雑音やフェージングという物理現象を電波が受けることにより受信側で誤りが発生することは当然あります。ですから、同じ情報を再送することによって誤りを防いでいるんです。手順としては、
①送信側が電波を送る。
②受信側が誤ったことを確認し、再送を要求する

③送信側が再送要求を確認し、再送する

といった手順になります。」


【従来の再送方法】

石田「なるほど、再送を要求している時間がすごくもったいなく感じますね…。」

塩満君「そうなんです。再送を要求した受信側は、送信側が送り直すまで待ってなければいけませんから、ここにすごくタイムラグが発生します。これを何とかしようと考えたわけです。具体的には、再送が必要かどうか、つまり誤りが発生しそうかどうかを送信側であらかじめ予測してしまおうという作戦です。」

石田「そんなことができるんですか!?」

塩満君「はい。過去に受信側が送信側に送り返してきた電波の様子を確認するんです。そのデータが酷く歪んでいれば通信路(電波が通ってきた道)の環境が劣悪であることを示しますから、当然送信側が送る場合も同じように影響を受けることは間違いありません。ですから、再送をすることをあらかじめ決めます。反対に、通信路が良好であれば再送の必要がないことはある程度判断ができるわけです。」


【塩満提案手法の解説図】

石田「なるほど~。過去の通信路の状態から再送の必要性を判断したわけですね!これは賢い…。」

塩満君「どもども。この手法によって、今までロスしていた時間を削ることができたので、低遅延かつ高信頼を実現できたんです。つまりURLLCの条件を満たせたわけですね。」

石田「よくわかりました!ありがとうございます。」


唯一Matlabを使用している学生であることについて

石田「ということで、ここまで研究の背景から提案手法の内容まで紹介していただきました。ところで、塩満君は実は岡本研究室で唯一Matlab(MathWorks製のシミュレーションソフト)を使用している学生なんです。というのも、岡本研究室では基本的にC言語のみを用いてシミュレーションを行っている人がほとんどなんです。その中で、なぜ塩満君だけがMatlabを使用することになったのですか?」

塩満君「それはずばり5Gの性質にあるでしょうね。5Gの中身はすごく複雑ですから、正直C言語で一つ一つ作っていると全体の完成までにすごく時間がかかってしまうんです。しかも、5Gの中身ってどんどん更新されていくのスピードが本当に命なんです。そこでですが、Matlabは“5Gツールボックス”といって、5Gの構成要素のプログラムが用意されているんです。だから、それを組み合わせるだけでシミュレーションができるので圧倒的にスピードが速いんですよ。そういうわけでMatlabを使用するに至った感じです。」

石田「なるほど~。そういう経緯があったんですね…。塩満君の研究が一番実用に近いと思うのでなかなか聞けない貴重な話がたくさん聞けました!塩満君、ありがとうございました!ゴルフ頑張ってください!」

塩満君「…あ、研究じゃなくてゴルフですか…。」


まとめ

というわけで本日は塩満君に研究内容を紹介していただきました!「5G」「自動運転」というホットなワードだらけの研究でしたが、皆さん興味を持っていただけたでしょうか??

最先端の内容にかかわることもたくさんありますので、本研究をやってみたい方はぜひ岡本研究室へ~

それでは今日はこの辺で!😉

湯沸かしポット変えました

こんにちは!😄

寒暖差が激しくなっております。皆様くれぐれも体調にはお気を付けくださいね。

先週の記事は長くて難しいものになってしまいましたので、今週はもっと親しみやすいテーマでお送りします。

題しまして、「湯沸かしポット変えました」です。

「うん…そっか、おつかれ~」といってブラウザバックしようとしているそこのあなた!お待ちください!私とて勿論ツイッター感覚で当ブログは運営しておりませんよ!😅

最近の記事は通信の技術的内容にかなり近づいていたのですが、やはりご覧いただいている方の多くは当研究室に興味を持っていただいた学生の皆さんだと思います。

ですから、皆様が当研究室の一員となったときにどんな生活を送るのかということにもしっかり焦点を当てようと思ったわけです。👍

そういうわけで、今回はポットをはじめとして研究室の設備のいくつかを紹介してまいろうと思います。

本日は章立てするほどの内容もありませんので、徒然なるままに書いていきますね~。

 

交換前のポットは非常に古いものでして、お恥ずかしい話だいぶ筒内にカルキが付着していて不衛生でもありました。しかもお湯が沸くまでに30分近くもかかるという…。

これを見かねた学生が先生に申し出をして先日新しいポットがやってまいりました。
ティ〇ァールを期待していた方には申し訳ありませんが、日本製のポットでございます。沸騰までに5、10分程度になりましたのでだいぶ助かっておりますよ。

研究室の昼食は学食で食べることが多かったのですが、最近は新型コロナウイルスの影響で食堂内の席の間隔が大きく空けられています。だから、なかなかみんなで食べに行こうとはならないんですよね…。

よって、コンビニで昼食を購入する学生がほとんどです。中にはカップラーメンを購入する方もいますから、そんな時にあまりに湯が沸くの遅すぎると湯沸かし器よりも先に学生が沸騰してしまいますからね(実際にはそんな短気な学生はいませんが…笑)。

あ、ちょうど上野君がコーヒーを淹れに来たみたいですね。

石田「お湯入れに来たの?ぺーさん(上野君)はコーヒーよく飲んでるけど好きなんだっけ?」

上野君「そうね~。休憩タイムには大体ポットでコーヒー淹れてる。ポットだけにぽっと一息つけるんだよね~~」

石田「あ、ポットの電源切っておきますね~」

上野君「おい。」

こんな感じで、結構自由に飲み物は飲めます。え?食べ物はどうかって?もちろんありますよ。ポット近くには飲み会の買い出しで余ったお菓子や誰かの出張のお土産などが置いてあります。ただ、だいぶ散らかっているので画像にはモザイクをかけておきますね。

それから冷蔵庫もしっかりと完備しておりますので、冷たい飲み物やアイスを置いておくことももちろん可能です。

おっ!ご覧ください。だれかが内緒でプリンを買ってきているようですね。岡本研がそんなに治安がいいとでも思っているんでしょうか。ばれる前に食べてしまいましょう

池田君「ちょっと勝手に食べないでください!食べ物の恨みは怖いですよ。」

あらら、ばれてしまいましたか…。また次回に期待しましょう…。

それから電子レンジもあります。実はこちらも最近変えたばかりで最新なんです。ですがとってもボタンが押しにくくて使用者がよく往生しております。正直僕からするとプログラミングの5000倍くらいは難しいですね。夜遅くまで残る一人暮らしの学生はよく冷凍食品を温めて食べているようです。

しかもドアがミラータイプになっているので、こんな感じで鏡としても使えるんですよ~(説明書にはこの使い方は書いてません)。

ということで今回は結構緩い内容でお届けをしてきました~。✨

いろんな層の方に楽しんでいただきたいのでたまにはこういう記事も書いていきたいなと思います!

それでは今日はこの辺で!😉

通信速度って測ったことある?

皆さんお久しぶりです。😊

withコロナが浸透してきた今日この頃ですが、夏休みはいかがお過ごしだったでしょうか?社会人の皆様、夏休みがあるのは学生だけだぞ!などと激高なさらないでください。

筆者の私は自粛期間中に趣味になったアニメ鑑賞のおかげで充実した夏休みになりましたよ~。✨

どうものめりこみすぎなのか、妄想がとまりません。何とは言いませんが、5つ子美少女の家庭教師を依頼されないかな~とか、古き良き日本の田舎でからかい上手な女の子と青春をおくれないかな~とか、素敵な手紙を書く両手が義手の機械人形のような少女と出会わないかな~とか、なにかと夢心地でございます。

…非常に人を選ぶような話題を失礼しました。しかし、何も全く関係のない話をしているわけではないのです。アニメ鑑賞をするには動画サイトが欠かせません。そして高画質で見ようと思ったらWi-Fi環境も大切になってきますよね。👌

そこで今回のテーマは「通信速度って測ったことある?」です。

皆さんはおうちのWi-Fiなどの通信速度を測ったことはありますか?家庭によって設置しているWi-Fiルーターの機種はそれぞれだと思いますが、環境によって通信速度が異なることが多いようです。ですから、人によっては動画サイトを閲覧することが困難だったりするわけですね。私のように毎日ネット〇リックスにお世話になっている人間にとってはそこそこのスペックが欲しいものです。そこでWi-fiの通信速度というのが重要になってくるわけですねぇ~。今回は、研究室付近で実際に学内に飛んでいるWi-Fiのスペックを確認することで測定の仕方やその結果について考察していきたいと思います!🙌

  • 何を見れば性能が分かる?
  • どれくらいの性能があればいい?
  • 実際に測ってみた!
  • なぜ性能の差が発生するのか
  • まとめ

何を見れば性能がわかる?

Wi-Fiの通信速度を確認する指標は主に3つあります。「上りの速度」、「下りの速度」、「ping値」です。まずは具体的にどうこうではなく、この3つの数値がどういうものなのかをざっくりご説明しますね!

上りの速度というのはスマホやパソコンなどの端末からルーターにデータを送る場合が該当しますので、例えばSNSに写真や文章を投稿する際の速度の指標になります。

一方の下りの速度ですが、こちらは逆にルーター側から端末にデータを送る際の速度を表したものになります。動画投稿サイトの閲覧、SNSの閲覧、メールの受信など、外部からの情報を自分の端末にもらう際の速度指標になります。

これらはともに単位がbpsとなっています。これは決して「バーベキュー パーティー しようぜ」の略称ではありません。bit per secondの略称で、つまり1秒間に何ビット送ることができるかということを表しています。ちなみにビットというのは01信号の数を表していますから、例えば4ビットであれば0001や1101などが該当するわけですね。

そして最後にping値ですが、これは通信を行う際にホスト(サーバー)と通信可能な状態かという確認や、ホストの動作確認を行う際に発生する遅延時間を示したものになります。ちなみにピンち、と読みます。レイテンシと呼ばれたりもしますね。先ほど説明した上り速度と下り速度が実際にデータをやり取りするときだけの速度を表したものとするならばping値は通信全体にどの程度の時間がかかるものなのかを表したものになります。ですから、値が小さいほど早いということは言うまでもありませんね。

しかし逆に、上り速度や下り速度がいくら早くてもping値があまりに大きければ(こういったケースはあまりないとは思いますが…)結局遅くなってしまうわけですね。ping値だけにピンチってわけですか。おあとがよろしいようで。😒

では、3つの数値がどういったものなのかはおおよそお分かりいただけたと思いますので、次はどれくらいの数値が必要なのかを調査していきましょう!


どれくらいの性能があればいい?

まずは上り速度です。下の表1をご覧ください。文字、写真、動画となっていくごとに目安の数値も大きくなっている様子が確認できますね。皆さんも何となくは想像がついていたとは思いますが、やはり動画のアップロードというのは非常に重たいことがわかります。ところで、さっきは単位がbpsって言ってたのにMbpsってなんやねん!と思われたかがいらっしゃるかもしれません。これは決して「まっけんゆうみたいなイケメンと バーベキュー パーティー してみたい」という意味ではありません。このMはメガという数学的な接頭辞の一つで100万を表します。つまり、1Mbpsといわれたら1秒間に100万ビット送ることができるということですね。電波というのが如何に高速なのかがわかります…。

表1 上り速度の目安
(引用元:https://www。nojima。co。jp/support/koneta/54502/#hikaris_2)

用途 速度
メールやSNSのメッセージ送信 1Mbps
SNSの写真投稿 3Mbps
SNSやYouTubeなどの動画投稿 10Mbps

しかし、ユーチューバーでもない限り動画のアップロード速度を過敏に気にされる方はあまりいないでしょう…笑

どちらかというと皆さんが気になるのは下りの速度ですよね。お待たせしました。表2をご覧ください。ここでは動画をオンラインで視聴することを考えたときに、画質によってどれくらいの性能が必要なのかに焦点を当てました。画質によってとても差があることは明白ですね。最低画質の360pから最高画質の4Kには20倍以上の速度差があることが確認できます。毎日4K動画を見るなんていう叶姉妹のような生活を送っている人はそうはいないかもしれませんが、フルハイビジョン(1080p)はよく使う方も多いでしょうから、やはり10Mbpsはあると安心のようですね~。

表2 下り速度の目安

動画の解像度 推奨される持続的な速度
4K 20Mbps
HD 1080p 5Mbps
HD 720p 2.5Mbps
SD 480p 1.1Mbps
SD 360p 0.7Mbps

最後はping値です。msはミリセカンド、すなわち0.001秒を表していますから、表3において「かなり速い」に分類されるためには0.015秒以下である必要があるということになりますね。しかし、なかなか秒数を言われたところでピンとは来ない(ping値だけに…しつこいですか?)と思いますから、実際に測定を行ってみましょう!

スピード評価 ping値
かなり速い 15ms以下
速い 16ms~35ms
普通 36ms~50ms
遅い 51ms~100ms
かなり遅い 101ms以上

 


実際に測ってみた!

図1をご覧ください。こちらは有線LANを接続しているデスクトップパソコンで回線速度を計測した時の画面になります。今回はfast.comさんを利用させていただきました。こちら、なんとpowerd by Netflixさんなんだとか…。ほんとにいつもお世話になっております。登録料が高いとか言われていますが、私はあなたの味方ですよ!これからも友達を勧誘し続けます!

さて図1に戻りまして、一番でかでかと書かれているのが下り速度になりますね。値を見てみるとなんと64Mbps…。表2と照らし合わせると4Kも余裕サクサクなことがわかりますねぇ…。実は一般的に有線LANは無線LANよりも安定していて大容量なんです。端末を動かさないのであれば有線はとても有効ですよ~。

次に右下の黄色で囲ったのが上り速度になります。アップロードするときの指標でしたね。こちらも表1の数値と比べると余裕な様子がわかります。

そして青と緑で囲ったものがping値(レイテンシ)です。青のほうが自分一人で回線を使用した場合のping値であるのに対し、緑は同じオフィスや家にいる人と同時にその回線を使った時のping値を表しています。やはり回線も複数人で使うと遅くなってしまいますからね。それでも11msという数字と表3を比べてみると「かなり速い」となっていることがわかります。素晴らしいです、学校の有線LAN!!


【図1 実際に測ったfast.comの画面(クリックすると見やすくなります)】

やった~これでめでたしめでたし………とはいきません。

我々は無線の研究室ですからね。有線で喜んでいるわけにはいきません…笑

特別Wi-Fiの研究をしているわけではありませんが、無線を勉強させていただいている身としては無線LANの速さを測らないわけにはいきません。そこでノートパソコンでこのfast.comを開いて研究室内外を歩き回って測定してまいりました。結果が図2になります!


【図2 場所ごとの下り回線速度計測結果】

今回は研究室と同じフロアの廊下、そして階段までで調査を行いました。無線ルーターを図のように研究室の上側に設置し、部屋のあらゆるポイント、廊下、踊り場で下りの回線速度の計算を行っております。

結果からわかる通り、部屋の中と廊下ではほとんど回線速度が同じであることが分かります。そして階段に近づくと少し低下し、最終的に踊り場では1Mbpsを下回る結果とりました。

正直筆者としてはルーターに近いところでは回線速度が非常に大きく、遠ざかるごとに距離に比例して下がっていくのでは?と考えておりました。もしかしたら同じ考えの人もいるかもしれませんね。

しかしよく考えてみると、ルーターの送信電力が一定であれば1秒間に届けることができるデータ量は一定ですから、十分な受信電力強度を満たしていればデータの強弱に関わらず届くデータの量は同じです。イメージが浮かばない人は図3をご覧いただければある程度ご理解いただけるかと思います。上二つ(送信電力が強い場合と普通の場合)は必要以上の電力で受信できているので、送られたデータを完璧に受け取れました。しかし、その情報量自体は同じです。ちなみに、一番下の送信電力が弱い場合では、所望の電力を満たしていないので一部の電波が損失し、送る予定だったデータが届きませんでした。

以上が実験の結果と考察になりますが、本実験はあくまで簡易的に行ったものになります。ルーターは私たちの研究室のみでなく上下階の研究室や同フロアの他研究室にもあるでしょうから、それの影響を受けている可能性も十分にあります。あくまでご参考程度に、ということをお断りしておきます。


【図3 送信電力強度と伝わるビット量の関係】


なぜ性能の差が発生するのか

ここまでいろいろとWi-Fiの性能についてみてきましたが、実を言うとWi-Fiの出力電力というのは上限が決められています。ですから電力という観点では性能は変わらないはずなのです。しかし、ふたを開けてみると「うちのWi-Fi遅いからさ~」みたいな会話が結構聞かれますよね。その原因はいろいろとあるのですが主に「周波数」、「アンテナ」、「ドアや壁による遮蔽」があります。

まずは周波数ですが、Wi-Fiの規格は2.4GHz帯と5GHz帯があります。周波数が高いほど多くの情報を運べますが、その分電波が届く距離が短くなってしまいます。電波は十分に届いているのに回線が遅いと感じていたら、もしかしたら周波数が原因かもしれません。

次にアンテナです。ルーターにはいろいろな種類がありますが図4のようにアンテナが外付けのものと内蔵されているものがあります。当然ですがアンテナが外部にあるほうがよく、また本数が多いほど性能は上がります。そのほかにもビームフォーミングといって端末がいる場所を特定してそこに向かって集中的に電波を送ることで性能を改善する技術が内蔵されているようなルーターも最近はあるようですね。

最後は遮蔽です。家の中にルーターを一つ設置すれば大体の家庭では家全体を網羅できますが、ルーターからだいぶ離れた部屋ではつながりにくいと感じる方もいるかもしれません。Wi-Fiもやはり電波ですから、扉や壁で遮蔽されるとその分減衰して弱くなってしまいます。こういったケースに対応して中継器などもあるようですから、気になる方は調べてみてくださいね。


【図4 無線LANルーター(左:アンテナ外付け 右:アンテナ内蔵)】


まとめ

というわけで今回は電波強度について実験も交えてお話をしてきました。普段我々は基地局を介した通信を扱うことが多いですが、面白そうでしたのでこんなトピックをご用意させていただきました。

皆様が快適なWi-Fiライフを送れますよう祈るばかりでございます。

それでは今日はこの辺で!

参考記事

・Nojima「快適なインターネット回線速度は?目安や平均、速度テスト計測、遅い時の対処方法を解説!」
https://www.nojima.co.jp/support/koneta/54502/

・フジログ通信「WiFiの距離はどれくらい届く?通信範囲を広げる方法も紹介」
https://fuji-wifi.jp/column/?p=4203